
JS7 JobScheduler

JS7 JobScheduler Architecture

Implementation Architecture:

Components & Services



▪ Workflows and Orders
▪ System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

2



JOC Cockpit

▪ JOC Cockpit is operated

as a passive cluster or

standalone and serves

the User Interface and 

REST API Service

▪ Makes use of a database

for persistence and for

restart capabilities

Controller / Agents

▪ A Controller operated as a 

passive cluster or stand-

alone orchestrates Agents

▪ Agents receive workflow

configurations from a 

Controller, start workflows

autonomously and report

back execution results

▪ Agents are operated as a 

cluster or standalone

Connections

▪ Communication between

components within the

indicated direction of

network connections

System Architecture

System Architecture

Database
Service

Active

JOC Cockpit

API Service

JS7 Primary JOC Cockpit

Standalone

Agent 

JS7 Agent InstanceClustered JS7 Agent Instances

JS7 Secondary Controller Instance

Standby

Controller

Standby

JOC Cockpit

API Service

JS7 Secondary JOC Cockpit

Active

Controller

JS7 Primary Controller Instance

3

JS7 Agent Instance

Standalone

Agent 
Cluster

Agent 

Cluster

Agent 



Workflows

Workflows with JOC Cockpit, Controller, Agents

JOC Cockpit / API Service

▪ JOC Cockpit manages the

inventory of workflows & jobs

and the daily plan which are

deployed to a Controller

▪ During workflow execution

JOC Cockpit receives job log 

output and order state events

in near real-time

Controller

▪ The Controller checks and 

forwards the daily plan and 

workflow configuration to

related Agents

Agent

▪ Agents start workflows / jobs

autonomously / on demand:

▪ jobs in workflows can be

executed with mixed Agents

▪ Agents execute workflows

autonomously within the

scope of the daily plan

▪ Agents report back to the

Controller any log output and 

events, for example when

starting or completing a task

4

Active

Controller

store history, logs

Active

Agent

Active

Agent

Agents

JOC Cockpit

User Interface

Journal

Forward:
▪ daily plan orders
▪ workflow configuration

Forward:
▪ order state events
▪ job log events

JournalJournal

Controller

JOC Cockpit

report events

Apply:

▪ daily plan orders

▪ workflow configuration

JOC Cockpit 

API Service

Controller Proxy
Service

Report:
▪ order state events
▪ job log events

Submit / Deploy:
▪ daily plan orders
▪ workflow configuration

Database
Service

Manage Inventory:
▪ daily plan orders
▪ workflow configuration

Report Back:

▪ order state events
▪ job log events



Orders

Orders with JOC Cockpit, Controller, Agents

JOC Cockpit / API Service

▪ JOC Cockpit manages

orders from the daily plan 

and orders on demand

▪ Orders are submitted to a 

Controller for execution of

workflows with Agents

Controller

▪ The Controller forwards

orders from the daily plan 

and orders on demand to

related Agents

Agent

▪ Agents start workflows / 

jobs autonomously / on 

demand

▪ Agents report back resulting

order state transition events

and log output events

▪ Agents watch directories for

incoming files and create

file orders

▪ Agents handle any number

of orders for the same 

workflow and for different 

workflows in parallel

5

Active

Controller

store history, logs

Active

Agent

Active

Agent

Agents

JOC Cockpit

User Interface

Journal

Forward:
▪ daily plan orders, on demand orders
▪ cancel, suspend, resume orders

Forward:
▪ order state events
▪ job log events

JournalJournal

Controller

JOC Cockpit

report events

Apply:

▪ daily plan orders, on demand orders

▪ cancel, suspend, resume orders

JOC Cockpit 

API Service

Controller Proxy
Service

Report:
▪ order state events
▪ job log events

Submit:
▪ daily plan orders, on demand orders
▪ cancel, suspend, resume orders

Database
Service

Manage Inventory:
▪ daily plan orders
▪ on demand orders

Report Back:

▪ order state events

▪ job log events
▪ file orders

File Watching

Perform:

▪ file watching for directories

▪ add file orders to workflows



▪ Workflows and Orders
▪ System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

6



Controller Cluster using JOC Cockpit as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller 

instances establish HTTP(S) 

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and synchronizes with the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby 

Controller instances are in 

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch is consulted

to determine which Controller 

instance should take over the

active role

▪ Fail-over occurs within 15s

7

JOC Cockpit

Active

Cluster Watch

JOC Cockpit

Standby

Cluster Watch

JOC Cockpit

JOC Cockpit

Standby

Cluster Watch

Active

ControllerJournal

Controller

Standby

Controller Journal

2) acknowledge

1) forward

store storeCluster 

Coupled

▪ JOC Cockpit acts as
Cluster Watch:

▪ Automated fail-over
between instances



Controller Cluster using an Agent as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller 

instances establish HTTP(S) 

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and synchronizes with the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby 

Controller instances are in 

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch Agent is

consulted to determine which

Controller instance should

take over the active role

▪ Fail-over occurs within 15s

8

Active

Controller

Cluster Watch

Agent

Active

Agent

Agents

Journal

JournalJournal

Controller

Standby

Controller Journal

2) acknowledge

1) forward

store storeCluster 

Coupled

Active

Agent

Journal

▪ Single Agent acts as
Cluster Watch

▪ No automated fail-over
between instances



Controller Integration

Controller Integration with JOC Cockpit

Controller Journal

▪ The Journal holds objects such 

as order state transition events

and log events of a Controller

▪ Such objects are synchronized

with the Standby instance

History Service

▪ The History Service subscribes

to events of the Controller

▪ Having received events and 

having stored them to the

database the service forwards

events to the GUI and instructs

the Controller to release events

Controller

▪ Events are originally stored to

the Journal after receipt from

an Agent or originating from

workflow instructions

▪ Events are removed from the

Journal when released by the

History Service

▪ Journal size can grow with the

number of objects, but will 

shrink when orders are comple-

ted and events are released

9

Active

ControllerJournal

Controller

Standby

Controller Journal

1) store 1) store

1) store history, logs

JOC Cockpit

User Interface

JOC Cockpit

JOC Cockpit 

API Service

Controller Proxy
Service

Database
Service

History

Service

2) remove 2) remove

forward

acknowledge

1) receive events

2) release events

Event Bus
Service

Cluster 

Coupled



Controller / Agent

Controller / Agent Communication

Controller

▪ All Controller instances

store workflow configura-

tions and order state

transitions in their journals

for synchronization

▪ These objects are passed

asynchronously to Agents

Agent

▪ Agents receive objects and 

store them in a journal

▪ Agents execute jobs inde-

pendently from an active

connection to a Controller

▪ Agents report back the

resulting order state events

and log events, e.g. after 

job completion

Communication

▪ If Controller, Agent or the

connection between them

fail then they will reconnect

▪ Communication recovers in 

case of longer outages for

hours and days

10

Active

Agent

Active

Agent

Agents

JournalJournal

Active

ControllerJournal
Standby

Controller Journal

store storesynchronize

store

Controller

1) forward 2) report back



▪ Workflows and Orders
▪ System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

11



▪ Cluster Service instances

are synchronized by use

of the database to which

they send heartbeats and 

check availability of each

other instance

▪ In case of failure one of

the remaining instances

will perform a cluster fail-

over operation

▪ Users can perform a 

switch-over operation by

selecting the next active

JOC Cockpit instance

▪ In case of switch-over the

Cluster Service will stop

any running Background 

Services normally

▪ For fail-over / switch-over

the Background Services 

are started from the

Cluster Service of the next

active JOC Cockpit 

instance

JOC Cockpit Cluster fail-over and switch-over

JOC Cockpit Cluster

Database
Service

Cluster

Service

Cluster

Service
Cluster

Service

Fail-over / Switch-over Fail-over / Switch-over

Active

JOC Cockpit

JOC Cockpit

Standby

JOC Cockpit

Standby

JOC Cockpit

12



▪ JOC Cockpit is operated in 

a servlet container

▪ Frontend User Interface for

browser access

▪ Backend API Services

provide information to the

GUI frontend and to clients

using the REST API

▪ The Cluster Service 

manages a number of

Background Services for

housekeeping, history and 

daily plan management

▪ Communication between

Backend API Services and 

Background Services is

based on an Event Bus

▪ The Proxy Service reports

order state transitions

occurring in a Controller 

or Agent

▪ Any JOC Cockpit service

can access the database

service to store and to

retrieve information

JOC Cockpit Frontend/Backend Services, Background Services, Event Bus and Proxy

JOC Cockpit Services13

Database
Service

Frontend

User Interface

Servlet Container

JS7 Secondary Controller

Standby

Controller

Proxy
Service

Restart

Service

JS7 Primary JOC Cockpit

Monitor

Service

Daily Plan

Service

Cluster

Service

Backend

API Services

Event Bus
Service

JS7 Primary Controller

Active

Controller

Cleanup

Service
History

Service



▪ The Cluster Service 

manages Background 

Services running in the

servlet container

▪ Background Services are

started, stopped etc.

▪ Cluster Service manages

fail-over to the next JOC 

Cockpit instance in case

of service failure

▪ Monitor Service notifies

about failed jobs and 

component failures etc.

▪ Restart Service reruns

pending deployments and 

performs synchronization

with a Controller

▪ Cleanup Service purges

the database, e.g. to limit

the size of the history

▪ History Service retrieves

execution results and logs 

from a Controller instance

▪ Daily Plan Service creates

and submits orders to

connected Controllers

JOC Cockpit clustered Background Services

JOC Cockpit Background Services14

Database
Service

Active JS7 JOC Cockpit

Restart

Service
Monitor

Service

Daily Plan

Service

Cluster

Service

Start/Stop/Status Start/Stop/Status

Cleanup

Service

Standby JS7 JOC Cockpit

Restart

Service
Monitor

Service

Daily Plan

Service

Cluster

Service

Start/Stop/Status Start/Stop/Status

Cleanup

Service

History

Service

History

Service



▪ The Proxy connects to the

active Controller instance, 

supports fail-over and 

manages asynchronous

messages

▪ The Proxy deploys confi-

guration objects, submits

orders to the Controller

▪ The Proxy handles

asynchronous operations

such as cancel, suspend, 

resume etc. for orders

with the Controller

▪ The Proxy returns the

order state and deploy-

ment status of objects

▪ The Proxy forwards

asynchronous events

including order state

transitions and log output

of jobs from the Controller

▪ Information returned or

forwarded by the Proxy is

added to the Event Bus

JOC Cockpit Proxy Service

JOC Cockpit Proxy Service15

Database
Service

JS7 Primary JOC Cockpit

JS7 Secondary Controller

Standby

Controller

Proxy
Service

Background

Services

Backend

Web Services

Event Bus
Service

JS7 Primary Controller

Active

Controller

Manage:
▪ submit daily plan orders
▪ deploy workflow configuration

Control:
▪ connect to Active Controller
▪ cancel, suspend, resume orders

Forward:
▪ events
▪ job logs

Return:
▪ order state information
▪ deployment status information



JS7 JobScheduler

16

Software- und

Organisations-

Service GmbH

Giesebrechtstr. 15

D-10629 Berlin

info@sos-berlin.com

https://www.sos-berlin.com

Questions?

Comments?

Feedback?


	Folie 1: JS7 JobScheduler
	Folie 2: JS7 JobScheduler
	Folie 3: System Architecture
	Folie 4: Workflows
	Folie 5: Orders
	Folie 6: JS7 JobScheduler
	Folie 7: Controller Cluster using JOC Cockpit as Cluster Watch
	Folie 8: Controller Cluster using an Agent as Cluster Watch
	Folie 9: Controller Integration
	Folie 10: Controller / Agent
	Folie 11: JS7 JobScheduler
	Folie 12: JOC Cockpit Cluster fail-over and switch-over
	Folie 13: JOC Cockpit Frontend/Backend Services, Background Services, Event Bus and Proxy
	Folie 14: JOC Cockpit clustered Background Services 
	Folie 15: JOC Cockpit Proxy Service
	Folie 16: JS7 JobScheduler

